

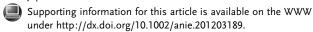



## Homogeneous Catalysis

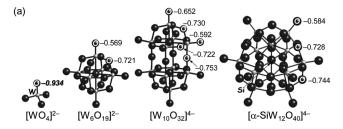
## A Bifunctional Tungstate Catalyst for Chemical Fixation of CO<sub>2</sub> at **Atmospheric Pressure**\*\*

Toshihiro Kimura, Keigo Kamata, and Noritaka Mizuno\*

Chemical fixation of carbon dioxide (CO<sub>2</sub>) into useful and valuable chemicals is a key technology for sustainable lowcarbon society because CO2 is a renewable and environmentally friendly C<sub>1</sub> source, which is in contrast to toxic CO and phosgene. [1] However, CO2 is much less reactive than CO and phosgene, and a large energy input (e.g., highly reactive reagents, high pressures of CO<sub>2</sub>, and stoichiometric amounts of strong acids or bases) is usually required to transform CO<sub>2</sub> into various chemicals. Therefore, the low-energy catalytic fixation of CO<sub>2</sub> is highly desirable. Catalytic CO<sub>2</sub> fixation at atmospheric pressure has been limited to reactive substrates (strained cyclic molecules, unsaturated compounds, etc.),[1] and bifunctional catalysts, which allow a concerted action on both CO<sub>2</sub> and substrates, are promising candidates for highly efficient CO<sub>2</sub> fixation at atmospheric pressure. [1d]


Catalytic C-N and C-O bond-formation processes with CO<sub>2</sub> are important in both industry and academia because they offer economical and environmental advantages such as high atom efficiency and water is the only by-product. [1a,d-f] Urea derivatives, made from CO<sub>2</sub>, are important end products or intermediates for pharmaceuticals, agricultural pesticides, antioxidants in gasoline, dyes, and resin precursors.[2] Although various base catalysts such as CsOH, Cs<sub>2</sub>CO<sub>3</sub>, and ionic liquids have been used for the synthesis of urea derivatives with CO<sub>2</sub>, these systems have disadvantages: 1) high CO<sub>2</sub> pressures (2.5-8.0 MPa) and reaction temperatures (423-453 K), 2) narrow applicability to substrates, and 3) need of dehydrating agents or additives (see Table S1 in the Supporting Information).<sup>[3]</sup>

Recently, we have developed a series of polyoxometalates (POMs) as catalysts for various functional-group transformations.<sup>[4]</sup> While acid and oxidation catalysis by POMs have extensively been investigated, there are no successful examples of base catalysis including chemical fixation of CO<sub>2</sub>. [4,5] The charges and sizes of POMs strongly affect the basicities of the oxygen atoms, and increase with an increase in the charge


[\*] T. Kimura, Dr. K. Kamata, Prof. Dr. N. Mizuno Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

E-mail: tmizuno@mail.ecc.u-tokyo.ac.jp Homepage: http://park.itc.u-tokyo.ac.jp/mizuno/

[\*\*] This work was supported in part by the Japan Society for the Promotion of Science (JSPS) through its "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Science, Sports, and Technology of



densities (i.e., the negative charge per size). On the basis of this concept, we focus on the basic property of a monomeric tungstate, [WO<sub>4</sub>]<sup>2-</sup>, having a high charge density. First, the structures of various tungstates were optimized by the density functional theory (DFT) calculations, and the basicities of oxygen atoms in various POMs were compared with the natural bond orbital (NBO) charges (Figure 1a). The NBO charge of an oxygen atom in  $[WO_4]^{2-}$  was -0.934, which is



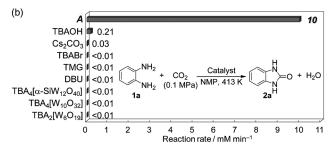



Figure 1. a) Calculated molecular structures of various tungstates and NBO charges of oxygen atoms. b) Reaction of 1a with CO2 at atmospheric pressure using various catalysts. Reaction conditions: Catalyst (150 µmol), 1a (1 mmol), CO<sub>2</sub> (0.1 MPa), NMP (1 mL), 413 K. Reaction rates were determined from the reaction profiles at low conversions (<10%) of 1a.

much lower than those (-0.569--0.753) in the other POMs such as  $[W_6O_{19}]^{2-}$ ,  $[W_{10}O_{32}]^{4-}$ , and  $[\alpha\text{-SiW}_{12}O_{40}]^{4-}$ , thus suggesting that  $[WO_4]^{2-}$  is the most basic among these tungstates. Herein, we report the first example of tungstatebased catalytic chemical fixation of CO<sub>2</sub>. A simple monomeric tungstate,  $TBA_2[WO_4]$  (**A**,  $TBA = [(n-C_4H_9)_4N]^+$ ), can act as a highly efficient homogeneous catalyst for chemical fixation of CO2 with amines, 2-aminobenzonitriles, and propargylic alcohols to give urea derivatives, quinazoline-2,4(1H,3H)-diones, and cyclic carbonates, respectively. The <sup>1</sup>H and <sup>13</sup>C NMR spectra show the specific interaction of the tungsten-oxo moiety in A with both CO<sub>2</sub> and the substrate. Such simultaneous activation by A results in the following advantages: 1) accomplishment of CO<sub>2</sub> transformations at



atmospheric pressure, 2) high yields and turnover numbers (TONs), and 3) applicability to a wide range of substrates.

A benchmark reaction of 1,2-phenylenediamine (1a) with CO<sub>2</sub> to give 2-benzimidazolone (2a) in N-methylpyrrolidone (NMP) was carried out (Figure 1b and see Table S2 in the Supporting Information). Since reactivities of less nucleophilic arylamines with CO<sub>2</sub> are very low, which is in sharp contrast with those of alkylamines, [6] 2a has not yet been obtained in the absence of catalysts even under harsh reaction conditions (6 MPa of CO<sub>2</sub> pressure at 423 K).<sup>[7]</sup> Notably, the A-catalyzed reaction proceeded efficiently with CO<sub>2</sub> at atmospheric pressure (0.1 MPa) to give 2a in 91% yield. Reactions hardly proceeded in the absence of A or in the presence of the other POMs such as TBA<sub>2</sub>[W<sub>6</sub>O<sub>19</sub>], TBA<sub>4</sub>- $[W_{10}O_{32}]$ , and  $TBA_4[\alpha-SiW_{12}O_{40}]$ , and is in accord with the computational results. The reaction rate (10 mm min<sup>-1</sup>) of A was 48-fold faster compared with those (< 0.01-0.21 mm min<sup>-1</sup>) of typical inorganic and organic strong bases such as Cs<sub>2</sub>CO<sub>3</sub>, TBAOH, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and 1,1,3,3-tetramethylguanidine (TMG). To the best of our knowledge, no successful example of either stoichiometric or catalytic synthesis from aromatic diamines and CO<sub>2</sub> has been reported.

The **A**-catalyzed system could be applied to various kinds of structurally diverse aromatic diamines (Table 1). Various kinds of 1,2-phenylenediamines (1a-1g) having electrondonating as well as electron-withdrawing substituents were converted into the corresponding 2-benzimidazolones 2a-2g in moderate to high yields using CO<sub>2</sub> at atmospheric pressure (Table 1, entries 3, 5, 7, 9, 11, and 13). 1,8-Diaminonaphthalene (1h) and 3,3'-diaminobenzidine (1i) were also effectively converted into the corresponding cyclic urea derivatives (2h and 2i) in 87 and 85% yields, respectively (Table 1, entries 15 and 17). For the reactions of various aromatic diamines at 2 MPa of CO<sub>2</sub>, high to excellent yields of the corresponding urea derivatives could be obtained even with low catalyst loadings (2–10 mol %; Table 1, entries 2, 4, 6, 8, 10, 12, 14, 16, and 18). The 4 mmol scale reaction of **1b** with CO<sub>2</sub> (2 MPa), catalyzed by A (0.5 mol % with respect to 1b) at 413 K for 96 h, gave 2b in 93 % yield. The TON got up to 186, and the value was much higher than those (0-52) reported for the base-catalyzed reactions of amines to urea derivatives (see Table S1 in the Supporting Information).<sup>[3]</sup>

Despite the weaker basicity of  $[WO_4]^{2-}$  (p $K_a$  of conjugate acid in water: 3.5) compared with those of the inorganic and organic strong bases such as  $[CO_3]^{2-}$  (10.3), DBU (12.0), and TMG (13.6),<sup>[8]</sup> A showed much higher catalytic activity. To elucidate the role of A, the reactivity of A with 1a and CO<sub>2</sub> were investigated by using <sup>1</sup>H, <sup>13</sup>C, and <sup>183</sup>W NMR spectroscopy. The <sup>1</sup>H NMR spectrum of **1a** showed the downfield shift of the signal of the NH<sub>2</sub> protons from  $\delta = 4.22$  to 4.76 ppm by addition of one equivalent of A (relative to 1a; Figures 2a,b, and Figure S1 in the Supporting Information), thus indicating the hydrogen-bonding interaction between A and 1a described in reference [9] (Figure S2). The downfield shift of the signal for the NH<sub>2</sub> protons ( $\Delta \delta = +0.54$  ppm) with **A** was much larger than that ( $\Delta \delta = + < 0.01$  ppm) with DBU, thus suggesting the stronger interaction of 1a with A. The signal at  $\delta = 16.4$  ppm in the <sup>183</sup>W NMR spectrum of **A** also shifted (to

Table 1: Reactions of aromatic diamines with CO<sub>2</sub> catalyzed by A. [a]

| Entry                                  | Substrate                                            | CO <sub>2</sub><br>[MPa] | Product             | Yield<br>[%] |
|----------------------------------------|------------------------------------------------------|--------------------------|---------------------|--------------|
| 1                                      | NH <sub>2</sub> 1a                                   | 0.1                      | N<br>N<br>N<br>H    | 91<br>90     |
| 3<br>4                                 | NH <sub>2</sub> 1b                                   | 0.1<br>2                 | N<br>N<br>H         | 85<br>99     |
| 5<br>6                                 | NH <sub>2</sub> 1c                                   | 0.1                      | N<br>N<br>N<br>O 2c | 78<br>98     |
| 7<br>8                                 | $F \underbrace{NH_2}_{NH_2} 1d$                      | 0.1<br>2                 | F N O 2d            | 87<br>94     |
| 9<br>10                                | CI NH <sub>2</sub> 1e NH <sub>2</sub>                | 0.1<br>2                 | CI N O 2e           | 50<br>76     |
| 11<br>12                               | $O_2N$ $NH_2$ $NH_2$ $NH_2$                          | 0.1<br>2                 | O <sub>2</sub> N    | 45<br>70     |
| 13<br>14                               | Ph NH <sub>2</sub> 1g                                | 0.1                      | Ph N 2g             | 56<br>83     |
| 15<br>16                               | NH <sub>2</sub> NH <sub>2</sub>                      | 0.1<br>2                 | O<br>HN NH 2h       | 87<br>97     |
| 17 <sup>[b]</sup><br>18 <sup>[b]</sup> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.1<br>2                 | O H N NH 2i         | 85<br>94     |

[a] Reaction conditions: Substrate (1 mmol), **A** (20  $\mu$ mol for entries 2, 4, 6, 16, and 18), (50  $\mu$ mol for entries 8 and 10, 100  $\mu$ mol for entries 3, 5, 12, 14, and 15, and 150  $\mu$ mol for entries 1, 7, 9, 11, 13, and 17), NMP (1 mL), 413 K, 24 h. Yields were determined by GC (entries 1–10, 15, and 16) or LC (entries 11–14) analysis. [b] Substrate (0.5 mmol). Yields are those of the isolated products.

 $\delta\!=\!1.7$  ppm) upon addition of  ${\bf 1a}$  (Figures 2 d,e). The hydrogen bond could weaken the N–H bond and facilitate the nucleophilic attack of the NH $_2$  group in  ${\bf 1a}$  on the carbon atom of CO $_2$ .

When the DMF solution of A was exposed to CO2 (0.1 MPa), a new <sup>13</sup>C signal appeared at  $\delta = 163.6$  ppm (Figure 2c and see Figure S1 in the Supporting Information) with satellites [coupling constants ( ${}^{2}J_{W-C}$ , 14% satellite intensities) of 6.7 Hz], thus suggesting the presence of a W-O-C bond. The α-carbon atoms of the terminal O-iPr ligands in W<sub>2</sub>R<sub>2</sub>- $(R'C \equiv CR'')_2(O-iPr)_4$   $(R = CH_2Ph, CH_2SiMe_3, nPr, and C_6H_4-iPr)_2(O-iPr)_4$ p-Me; R'CCR" = MeC $\equiv$ CMe, MeC $\equiv$ CEt, and EtC $\equiv$ CEt) show similar coupling constants  $^2J_{\text{W-C}}$  (4–12 Hz). $^{[10]}$  The chemical shift was different from those of free CO<sub>2</sub> ( $\delta$  = 125.3 ppm) and TBAHCO<sub>3</sub> ( $\delta = 160.7$  ppm). Therefore, the new  $^{13}$ C signal at  $\delta = 163.6$  ppm could arise from the A/CO<sub>2</sub> adduct, which is similar to Lewis base/CO2 adducts such as amidines, guanidines, and N-heterocyclic carbenes (Figure S2).[11] These base/CO<sub>2</sub> adducts are key carrier intermediates for accomplishing the fixation through nucleophilic incorporation of the O=C=O unit.[1,12] Upon introduction of  $CO_2$  (0.1 MPa), a new <sup>183</sup>W signal appeared at  $\delta = 57.8$  ppm



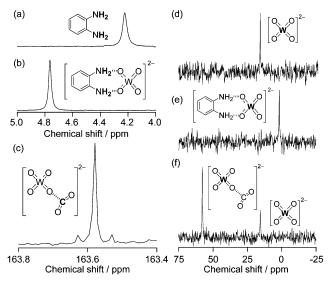



Figure 2.  $^{1}$ H NMR spectra of a) 1a (0.05 M) and b) 1a (0.05 M) in the presence of A (0.05 M). c)  $^{13}$ C NMR spectrum of A (0.5 M) with CO<sub>2</sub> at atmospheric pressure (0.1 MPa). <sup>183</sup>W NMR spectra of d) A (0.5 M), e) A (0.5 M) in the presence of 1a (0.5 M), and f) A (0.5 M) with CO<sub>2</sub> at atmospheric pressure (0.1 MPa). Conditions: DMF/[D<sub>7</sub>]DMF (2:1, v/v), 298 K for (a) and (b), and 233 K for (c), (d), (e), and (f).

with a decrease in the intensity of the signal at  $\delta = 16.4$  ppm (Figures 2 d,f). In contrast, no interaction of the other POMs such as  $TBA_4[\alpha-SiW_{12}O_{40}]$  and  $TBA_2[W_6O_{19}]$  with both 1a and CO<sub>2</sub> was observed, thus showing the specific bifunctional interaction of A with both 1a and CO<sub>2</sub>. The <sup>183</sup>W NMR spectrum of **A** in the presence of both **1a** and  $CO_2$  also showed the signals at  $\delta = 55.9$  and -0.2 ppm, which are assignable to A/1a and A/CO2 adducts, respectively, thus supporting the bifunctionality of A.

The reaction of N,N'-dimethyl-1,2-phenylenediamine with CO<sub>2</sub> catalyzed by A did not proceed, thus suggesting that the reaction proceeds via the isocyanate intermediate, which cannot be formed from a secondary aromatic amine. [13] On the basis of these results, the present reaction of 1a with CO<sub>2</sub> possibly proceeds as follows (see Figure S3 in the Supporting Information): First, the activation of both 1a and CO<sub>2</sub> by A facilitates the nucleophilic attack of the NH2 group on the carbon atom of CO2 to give the corresponding carbamic acid.[14] Then, the carbamic acid is converted into the isocyanate intermediate. Finally, the nucleophilic attack of NH group on carbon atom of isocyanate takes place to give the corresponding urea derivative.

To investigate the effectiveness of the present simultaneous activation of CO<sub>2</sub> and a nucleophile, we explored Acatalyzed CO<sub>2</sub> transformations of various nucleophiles such as amines and alcohols (Table 2). The A-catalyzed reactions of 2-aminobenzonitiriles (3a and 3b), terminal propargylic alcohols (3c and 3d), and primary alkylamines (3f and 3g) using an atmospheric pressure of CO<sub>2</sub> efficiently proceeded to give the corresponding quinazoline-2,4(1H,3H)-diones (4a) and 4b), cyclic carbonates (4c and 4d), and 1,3-disubstituted urea derivatives (4f and 4g; Table 2, entries 1, 3, 5, 9, 11, and 13), whereas higher CO<sub>2</sub> pressures (0.5–14 MPa) are generally required to attain high yields with other catalysts (Tables S1

Table 2: Reactions of various substrates with CO<sub>2</sub> catalyzed by A. [a]

|          |                                                                     |                          | - ,                                                                |           |                            |
|----------|---------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------|-----------|----------------------------|
| Entry    | Substrate                                                           | CO <sub>2</sub><br>[MPa] | Product                                                            | t<br>[h]  | Yield<br>[%]               |
| 1 2      | NH <sub>2</sub> 3a                                                  | 0.1<br>2                 | HNO 4a                                                             | 120<br>24 | 90<br>90                   |
| 3        | CI NH <sub>2</sub> 3b                                               | 0.1<br>2                 | CI NH 4b                                                           | 120<br>24 | 93<br>96, TON 480          |
| 5<br>6   | ────OH 3c                                                           | 0.1                      | 0<br>0<br>4c                                                       | 15<br>24  | 76, TON 228<br>95, TON 473 |
| 7<br>8   | OH 3d                                                               | 0.1                      | 0<br>0<br>4d                                                       | 15<br>24  | 84, TON 252<br>95, TON 475 |
| 9<br>10  | Ph———OH 3e                                                          | 0.1                      | O 4e                                                               | 24<br>12  | 31<br>82                   |
| 11<br>12 | <i>n</i> -C <sub>6</sub> H <sub>13</sub> -NH <sub>2</sub> <b>3f</b> | 0.1<br>2                 | $n\text{-}C_6H_{13}$ N $H$ $N$ | 30<br>24  | 62<br>76                   |
| 13<br>14 | NH <sub>2</sub>                                                     | 0.1<br>2                 | $\bigcirc \bigvee_{N} \bigvee_{H} \bigvee_{4g}$                    | 30<br>24  | 56<br>70                   |

[a] Reaction conditions: Substrate (1 mmol for entries 1-3 and 9-14), (3 mmol for entries 5 and 7), and (5 mmol for entries 4, 6, and 8), A (10 μmol for entries 4-6 and 10), 20 μmol for entries 1-3, 12, and 14), 100 μmol for entries 11 and 13), and (150 µmol for entry 9); solvent: DMSO (2 mL; entries 1-4), CH<sub>3</sub>CN (0.1 mL, entries 5-10), and NMP (1 mL, entries 11-14); reaction temperature: 333 K (entries 5 and 7), 353 K (entries 6 and 8-10), 373 K (entries 1-3), 393 K (entry 4), and 413 K (entries 11-14). Yields were determined by GC analysis.

and S3-S5 in the Supporting Information).[3,12a,15] Catalytic synthesis of 1,3-disubstituted urea derivatives using CO<sub>2</sub> at atmospheric pressure is unprecedented. In addition, the reactions of various kinds of substrates including an inactive internal propargylic alcohol (3d) at 2 MPa of CO<sub>2</sub> efficiently proceeded even with low catalyst loading (0.2-2 mol %; Table 2, entries 2, 4, 6, 8, 10, 12, and 14).[16,17] Notably, the reactions of 3b-3d with CO<sub>2</sub> using 0.2 mol % of A efficiently proceeded to give 4b-4d in 96, 95, and 95% yields, respectively. In these cases, the TONs were 480, 473, and 475, respectively, and the values were much larger than those (3-22, < 1-12, and < 1-96 for 3b, c, and d, respectively) of thereported systems (Tables S3-S5).[12a,15]

Our study shows the importance of developing bifunctional catalysts which can activate both CO<sub>2</sub> and a nucleophile (amines, alcohols, etc.). This approach is a promising strategy for the development of highly efficient chemical fixation of CO<sub>2</sub> to generate various useful chemicals under the very mild reaction conditions.

Received: April 25, 2012 Published online: June 5, 2012

Keywords: carbon dioxide fixation · heterocycles · homogeneous catalysis · reaction mechanism · tungstate

- [1] a) T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365-2387; b) P. G. Jessop, T. Ikariya, R. Noyori, Science 1995, 269, 1065-1069; c) G. A. Olah, B. Török, J. P. Joschek, I. Bucsi, P. M. Esteves, G. Rasul, G. K. S. Prakash, J. Am. Chem. Soc. 2002, 124, 11379-11391; d) M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T. E. Müller, ChemSusChem 2011, 4, 1216-1240; e) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. 2011, 123, 8662-8690; Angew. Chem. Int. Ed. 2011, 50, 8510-8537; f) M. Aresta, Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010; g) D. Yu, Y. Zhang, Proc. Natl. Acad. Sci. USA 2010, 107, 20184 - 20189.
- [2] N. Volz, J. Clayden, Angew. Chem. 2011, 123, 12354-12361; Angew. Chem. Int. Ed. 2011, 50, 12148-12155.
- [3] a) F. Shi, Y. Deng, T. SiMa, J. Peng, Y. Gu, B. Qiao, Angew. Chem. 2003, 115, 3379-3382; Angew. Chem. Int. Ed. 2003, 42, 3257 – 3260; b) A. Ion, V. Parvulescu, P. Jacobs, D. De Vos, Green Chem. 2007, 9, 158-161; c) T. Jiang, X. Ma, Y. Zhou, S. Liang, J. Zhang, B. Han, Green Chem. 2008, 10, 465-469.
- [4] N. Mizuno, K. Yamaguchi, K. Kamata in Topics in Organometallics Chemistry—Chemistry of Bifunctional Molecular Catalysis (Eds.: T. Ikariya, M. Shibasaki), Springer, Berlin, 2011, pp. 127 – 160.
- [5] a) T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 1996, 41, 113-252; b) I. V. Kozhevnikov, Catalysts for Fine Chemical Synthesis, Vol. 2, Wiley, Chichester, 2002; c) C. L. Hill in Comprehensive Coordination Chemistry II, Vol. 4 (Eds.: J. A. McCleverty, T. J. Meyer), Elsevier Pergamon, Amsterdam, 2004, pp. 679-759; d) R. Neumann, A. M. Khenkin, Chem. Commun. 2006, 2529-2538.
- [6] K. Masuda, Y. Ito, M. Horiguchi, H. Fujita, Tetrahedron 2005, 61, 213 - 229.
- [7] B. M. Bhanage, S. Fujita, Y. Ikushima, M. Arai, Green Chem. 2003 5 340 - 342
- [8] a) M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer, Berlin, 1983; b) CRC Handbook of Chemistry and Physics, 82nd ed. (Ed.: D. R. Lide), CRC, Boca Ratton, 2001-2002; c) D. Granitza, M. Beyermann, H. Wenschuh, H. Haber, L. A. Carpino, G. A. Truran, M. Bienert, J. Chem. Soc. Chem. Commun. 1995, 2223-2224; d) I. M. Kolthoff, M. K. Chantooni, Jr., S. Bhowmik, J. Am. Chem. Soc. 1968, 90, 23-28.
- [9] a) D.-W. Yoon, H. Hwang, C.-H. Lee, Angew. Chem. 2002, 114, 1835 – 1837; Angew. Chem. Int. Ed. 2002, 41, 1757 – 1759; b) I. M. Jones, A. D. Hamilton, Angew. Chem. 2011, 123, 4693-4696; Angew. Chem. Int. Ed. 2011, 50, 4597-4600.

- [10] M. H. Chisholm, B. W. Eichhorn, K. Folting, J. C. Huffman, Organometallics 1989, 8, 49-66.
- [11] a) C. Villiers, J.-P. Dognon, R. Pollet, P. Thuéry, M. Ephritikhine, Angew. Chem. 2010, 122, 3543-3546; Angew. Chem. Int. Ed. 2010, 49, 3465-3468; b) F. S. Pereira, E. R. deAzevedo, E. F. da Silva, T. J. Bonagamba, D. L. da S. Agostíni, A. Magalhães, A. E. Job, E. R. P. González, Tetrahedron 2008, 64, 10097 -10106; c) H. A. Duong, T. N. Tekavec, A. M. Arif, J. Louie, Chem. Commun. 2004, 112-113.
- [12] a) Y. Kayaki, M. Yamamoto, T. Ikariya, Angew. Chem. 2009, 121, 4258-4261; Angew. Chem. Int. Ed. 2009, 48, 4194-4197; b) L. Gu, Y. Zhang, J. Am. Chem. Soc. 2010, 132, 914-915.
- [13] C. Wu, Green Chem. 2010, 12, 1811-1816.
- [14] Upon introduction of CO<sub>2</sub> (0.4 MPa) into the DMF solution containing 1a (0.9 m) and A (0.2 m), seven new <sup>13</sup>C signals appeared at  $\delta = 159.6$ , 139.7, 132.0, 120.9, 120.5, 117.1, and 116.2 ppm (see Figure S4 in the Supporting Information). It has been reported that the <sup>13</sup>C signal of the carboxy carbon atom in carbamic acid appears in the range of  $\delta = 157-160 \text{ ppm.}^{[6]}$ Therefore, these seven <sup>13</sup>C signals are likely to correspond to the carbamic acid. New  $^{1}$ H signals also appeared at  $\delta = 7.19$  and 6.78 ppm and are assigned as the aromatic and NH protons of the carbamic acid, respectively, while other signals overlapped with those of 1a. In contrast, these <sup>13</sup>C and <sup>1</sup>H signals were not observed in the absence of A.
- [15] a) J. Gao, L.-N. He, C.-X. Miao, S. Chanfreau, Tetrahedron 2010, 66, 4063-4067; b) H.-F. Jiang, A.-Z. Wang, H.-L. Liu, C.-R. Qi, Eur. J. Org. Chem. 2008, 2309 - 2312; c) N. D. Ca', B. Gabriele, G. Ruffolo, L. Veltri, T. Zanetta, M. Costa, Adv. Synth. Catal. 2011, 353, 133-146; d) T. Mizuno, Y. Ishino, Tetrahedron 2002, 58, 3155-3158; e) Y. P. Patil, P. J. Tambade, K. M. Deshmukh, B. M. Bhanagae, Catal. Today 2009, 148, 355-360; f) Y. Kayaki, M. Yamamoto, T. Ikariya, J. Org. Chem. 2007, 72, 647-649; g) Y. Gu, F. Shi, Y. Deng, J. Org. Chem. 2004, 69, 391-394; h) I. Tommasi, F. Sorrentino, Tetrahedron Lett. 2009, 50, 104-107; i) M. Costa, G. P. Chiusoli, M. Rizzardi, Chem. Commun. 1996, 1699-1700; j) G.-Q. Yuan, G.-J. Zhu, X.-Y. Chang, C.-R. Qi, H.-F. Jiang, Tetrahedron 2010, 66, 9981 – 9985.
- [16] The reaction of aniline with CO<sub>2</sub> did not proceed under the same reaction conditions as those used for 3f and 3g (Table 2, entries 12 and 14).
- [17] The reactions of 2-aminobenzonitriles and propargylic alcohols possibly proceed via the corresponding carbamic and carbonic acids and subsequent transformations to the corresponding quinazoline-2,4(1H,3H)-diones and cyclic carbonates, respectively, in a similar way to those of the reported systems.<sup>[15]</sup>

6703